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A preconditioned Krylov subspace method (GMRES) is used to
solve the linear systems of equaticns formed at each time-integration
step of the unsteady, two-dimensional, compressible Navier-Stokes
equations of fluid flow, The Navier-Stokes equations are cast in an
implicit, upwind finite-volume, flux-split formulation. Several pre-
conditioning technigues are investigated to enhance the efficiency and
convergence rate of the implicit solver based on the GMRES algorithm.
The superiority of the new solver is established by comparisons with a
canventional implicit solver, namely line Gauss-Seidel relaxation
(LGSR). Computational test results for low-speed (incompressible
flow over a backward-facing step at Mach 0.1), transonic flow (trailing
edge flow in a transonic turbine cascade ), and hypersonic flow {(shock-
on-shock interactions on a cylindrical leading edge at Mach 6.0) are
presented. For the Mach 0.1 case, overal! speedup factors of up to 17
(in terms of time-steps) and 15 (in terms of CPU time on a CRAY-
YMP/B) are found in favor of the preconditioned GMRES solver, when
compared with the LGSR solver. The corresponding speedup factors
for the transonic flow case are 17 and 23, respectively. The hypersonic
flow case shows slightly lower speedup factors of @ and 13, respec-
tively. The study of preconditioners conducted in this research reveals
that a new LUSGS-type preconditioner is much more efficient than a
conventional incomplete LU-type preconditioner.  © 1994 Academic
Press, Inc.

l. INTRODUCTION

Recent advances in CFD techniques and computer
technologies have led to the development of very powerful
tools for the simulation and anatysis of fluid flow over com-
plex configurations. The 2D, compressible, Navier-Stokes
equations are integrated in time by the application of an
implicit, finite-volume scheme. The difference equations at
cach grid point icad to a system of simultancovus lincar
cquations for the entire domain, which has to be solved at
each time step.

The system of equations can be solved by direct mutrix
inversion; however, this requires cxtensive computer
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memory and computation effort at each time step. Iterative
schemes are a viable alternative because of their com-
putational eflicicncy and relatively meager memory
requirements. These schemes, however, can be slow in
converging from the initial guess to the final solution—a
problem which has been a topic of research over the years
for numcrical analysts.

Upwind relaxation methods [1-37] and the spatially split
approximate [luctorization [4-67 (AF) techniques have
cnjoyed considerable popularity in CFD rescarch over
the years. Relaxation schemes are related to the spatial
discretization of the convective and diffusive terms. For
first-order upwind differencing, the coeflicient matrix is
diagonally dominant for any time-step, which permits
the use of standard relaxation schemes like Jacobi and
Gauss-Seidel iteration. Higher-order spatial differencing
does not guarantec dizgonal dominance of the coeflicient
maltrix, which forces the use of some form of alternate
sweeping strategy to ensure stability. Hence, the con-
vergence rate of relaxation schemes strongly depends on the
spatial discretization adopted for the implicit operator. In
addition, many of the relaxation schemes do not completely
vectorize due to recursive operations. The schemes that do
vectorize completely (e.g., point Jacobi) have poor rates of
convergence to the steady state.

The AF techniques refer to the family of methods where
the 2D or 3> impiicit operator is factored inlo a sequence
of simpler 1) operators. The convergence properties of
these schemes are strongly aflected by the factorization
error, particularly as the time-step becomes large {(optimal
convergence is obtained for Courant numbers of order 10).
Hence, the AF technigques exhibit an optimal convergence
rate that is time-step dependent and problem dependent
{2]. In 3D applications, the AF techniques encounter
stability restrictions on the time-step. The advantages of AF
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The specific heat ratio, y, is taken to be 1.4. The molecular
viscosity is given by g, a is the speed of sound, and Re, is the
Reynolds number per unit length. Nondimensionalization is
with respect to the freestream density and velocity., The
physical coordinates (x, y) and viscosity are nondimen-
sionalized by a reference length L and the molecular
viscosity of the freestream, respectively.

The governing equations are solved computationally in
their integral, conservation law form, using a cell-centered
finite volume formulation. Inviscid flux terms are upwinded
using Van Leer’s [13] flux-splitting scheme. The thin-layer
viscous fluxes are evaluated with second-order accurate
central differences.

Equation (2) can be rewritten as

10Q
T R, (3)
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R is called the residual and is equal to zero for a steady state
solution. The Euler implicit discretization of Eq. (3) in time
gives
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where 4Q" is the incremental change in the ccll-centered
values of the vector Q between the (1 4 1)th time level and
the known nth time level, ie., '

AQn=Q"+1_Q"v (5)

R"*!is linearized in time about the nth time level which
transforms Eq. (4) into

[oaRN
(m'ﬁ'g@*) AQ"= —R (6)
or
" AQ" = —R", (7)

where I/J 4t 15 a block-diagonal matrix and JR"/00 15 a
large, sparse, block, banded matrix.

The system of linear simultaneous algebraic equations of
Eq. (7) can be solved in several efficient ways. In this
research, a comparison is made between the efficiency of an
alternate sweeping line Gauss—Seidel relaxation (LGSR)
solver [3] and that of a preconditioned generalized
conjugate-gradient type solver. Results of comparisons with
an approximate factorization (AF} solver may be found in
Ref. [14].

2.2. Conjugate Gradient Methods (CGMs)

Recall, that we are interested in solving the linear system
of equations

V" AQ" = —R" <> Ax = b, (8)

The classical conjugate gradient method was proposed by
Hestenes and Steifel [8] to solve the system Ax = b, where
A is a symmetric and positive definite (SPD) matrix. The
idea of using CGMs as iterative methods was first discussed
by Reid [15].

If the coefficient matrix is not symmetric and/or positive-
definite (which is often the case in CFD applications), the
method requires generalization. Several generalizations
have been proposed, particularly for non-symmetric
systems by Saad and Schultz [11], Young and Jea [16],
and Axelsson [17], to name a few. The CGS method of
Sonneveld [ 18], the Bi-CGSTAB method of Van der Vorst
[19]. and the QMR method of Freund and Nachtigal [20]
are some recent additions to the family of generalizations
for CGMs. There is no definitive way of determining the
best generalization. The particular generalization used in
this paper is the generalized minimal residual (GMRES)
method of Saad and Schuitz {11], which seems to be the
most popular methed in the literature. The fundamental
idea of GMRES is to minimize the norm of the computed
residual vector, 7, (r, = b — Ax,) at each iteration.



PRECONDITIONED CONJUGATE GRADIENTS 71

The GMRES method is formulated in such a way that it
is directly applicable to solve linear systems with nonsym-
metric coefficient matrices. The first siep in the method is to
use Arnoldi’s method [21] to construct an orthonormal
basis of vectors of the Kiylov subspace KA, w,, k}=
span{w,, Aw,, .., 4* " 'w}. Let W, denote the rectangular
matrix of size N« &, whose columns consist of the &
individual vectors (each of length N} of the orthonormal
basis of vectors formed by the Arnoldi process.

In order to solve the linear system Ax =5, the method
seeks an approximate solution x; of the form x, = x4+ z,,
where x, is some arbitrary initial guess to the exact solution
X. The vector z; lies in the Krylov subspace collectively
defined by A, w, =r /B (B=|r.l|}and k, ie,

7, € K(A, ry, k) =spanir,, Arq, A%rg, ..., 4% 'ry)
:Span{r()! Frslay ey rk}:kak (9]

for any vector y,. The various methods generated by this
approach are called Krylov subspace methods.

The iterative scheme based on Krylov subspace methods
will converge the fastest when each successive iterate x, (or
;) minimizes the residual norm, |r,|. This can be restated
as a mimimization of |{r, |} over z, € K( A4, ry, k), i.e,,

min (b —Ax,]|.

<k € K(A,ro, k)

min
e K(Ad, rg, &)

I7ell =

(10)

The function to be minimized can be rewntten as

{6 — Ax )l = 1(b—Axo— Az )| = ((ro— Az, )|
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=W fer— Wi He pell
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where H, is an upper-Hessenberg matrix defined such that
AW, =W,  H,and W, is an orthonormal matrix. A
QR factorization of H, is performed (@, H, = R,), and the
upper-triangular matrix R, is used solve a sysiem of the type
R, yv.=g,, to yield the minimization solution p,. The
solution to the linear system is finailly computed as
Xe=Xg+ Wiy

The complete GMRES algorithm can be written as
foliows:

1. For any starting vector x,, from ro=5b—Ax,;
B =lirolla; wi=ro/B.

2. Perform k& steps of Arnoldi’s method with w, to
form W,.

3. From the approximate solution:
{a} Find the vector y, which solves the minimization
of Eq. (11) :

(b) Compute x, =x,+ W, y,.

In summary, the GMRES method is a minimization
process to solve linear matrix systems like Ax = b. The mini-
mization proceeds as a sequence of sub-iterations, &, and the
minimizer is obtained by a simple upper-triangular solve in
step 3 of the algorithm. One major practical difficulty with
GMRES is that when £ increases, both storage and opera-
tion cost increase as O(k) and O(k?), respectively. If the
available storage is limited, the method may be restarted
after & sub-iterations, with x, replacing x, in step 1. The
restart version of the algorithm is referred to as GMRES({k).
In addition, the total number of sub-iterations can be
restricted to minimize the cost of each global iteration. This
issue is discussed in detail later in this paper. The GMRES
algorithm is used in conjunction with preconditioning,
which is discussed in the next section.

Further mathematical details, implementation techni-
ques, and convergence analyses are contained in Refs.
(12, 14]. Since this paper is concerned with convergence
acceleration, it may be remarked that the speed of con-
vergence of any algorithm depends on the condition num-
ber, x,(A), of the coefficient matrix 4 and the distribution
of singuiar values of 4. k,(A4) is defined as the ratio of the
maximum {o minimum singular value of the matrix A4. If
K,(A)1s large and/or the spectrum of singular values of 4 is
wide and scattered, the matrix 4 is said to be poorly condi-
tioned and convergence may be very slow. Preconditioning
is employed to improve the conditioning of the matrix. The
preconditioning technique chosen usually has a first-order
effect on the convergence characteristics and efficiency of
solvers based on GMRES-like algorithms.

2.3, Preconditioning—Concepts and Techniques

One of the most effective iterative methods for solving
large sparse linear systems is a combination of a generalized
conjugate gradient-like procedure with some appropriate
precenditioning technigque. Assuming that a preconditioner
M is used on the left of the original unpreconditioned
system, this involves solving the preconditioned linear
system

M 'Ax=M ‘b= Adx=5, (12)
instead of the original system Ax = 5.

The motivation of preconditioning is to reduce the overall
computational effort required to solve linear systems of
equations by increasing the convergence rate of the under-
lying iterative algorithm. Preconditioning will be effective
only if the additional computational work incurred per
sub-iteration is compensated for by a reduction in the total
number of sub-iterations to convergence—so that the total

cost of solving the linear system is reduced.

The costs associated with preconditioning can be
enumerated as (i) compulting the preconditioning matrix M,
(ii) matrix—vector multiplies or equivalent linear system
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FIG. 1. Computational grid for backward facing step, 61 x 51 grid.

influenced by the skill of the individual programmer, com-
piler optimization, vectorization, and parallelization. It may
be remarked that the “number of time-steps” is independent
of all the factors that influence the “CPU time” and thus
reflects the true convergence characteristics of a solver. The
“CPU time” comparisons are useful and, in conjunction
with the “number of time-steps” comparisons, provide an
estimate of the practical utility of a solver.

A thorough mathematical analysis of the competing
solvers in this paper could provide an in-depth explanation
of why one solver or preconditioner is better than another.
Such an analysis would require a detailed eigenvalue
analysis of each iterative scheme. Unfortunately, it is practi-
cal to do such an analysis only for small matrices, as may be
encountered in 1D problems or in 2D problems with very
coarse meshes. A coarse mesh for the test problems of this
paper could be adopted for this purpose, but then there is no
theory to provide a one-on-one correspondence between
eigenvalues for a coarse and fine mesh. Thus, even though a
complete eigenvalue analysis is desirable to fully explain
the difference in convergence rates of the solvers, it is
impractical for the large problems being tested in this
research.

3.1. Low-Speed Flow over a Backward-Facing Step -

Armaly er al. [ 257 have presented detailed measurements
of velocity distribution and reattachment length for the
incompressible flow of air downstream of a single backward
facing step in a 2D channel. The results show that the
various flow regimes (in the Reynolds number range of
70 < Re < 8000), are characterized by typical variations of
separation length with Reynolds number. The Reynolds
number is based on the height of the step and two-thirds of
the maximum inflow velocity at the step. The particular test
case chosen for this research corresponds to Re = 400, since
the experimental data suggests that Re > 400 produces 3D
variations in the flowfield.

The numerical computations are performed on an
H-mesh with 61 and 51 points in the £ {streamwise) and #

{normal} directions, respectively. The grid is shown in
Fig. 1. Grid points are clustered, both in the normal and
streamwise directions, to resolve the various viscous
gradients and the reattachment point of the separated flow.
A freestream Mach number of M =0.1 and Reynolds
number of Re_, = 389 is specified.

Adiabatic, no-slip boundary conditions are used on the
top and bottom walls forming the boundaries of the channel
and on the lower portion (which defines the step) of the
inflow boundary. For fully developed subsonic flow at the
outflow boundary, three variables (p, u, and ») are
extrapolated and one variable (stagnation enthalpy) is held
constant. A parabolic velocity profile at the inflow is
simulated by imposing a profile of Reimann invariants at
the inflow boundary.

Figure 2 shows Mach number contours obtained from
the computations on the 61 = 51 grid, The nature and size of
the separation and recirculation behind the step closely
matches the physical description of the flow as obtained in
the experiments of Armaly eral [25]. It should be
remarked that the reattachment point is the primary flow
feature used to characterize the flow in the experimental
data [25]. For Re = 387, the experimental results suggest a
downstream reattachment length (Xz) to step height (8)
ratio of Xg/5=79. The numerical cornputation predicts
X /5 =28.0. Thus, the experimental and numerical reattach-
ment lengths are close to each other. A comparison of
experimental and computational velocity vectors is shown
in Fig. 3.

Figure 4 presents the convergence history comparisons
between GMRES with LUSGS preconditioning (GMLUS),
GMRES with ILU preconditioning (GMILU), and the line
Gauss—Seidel relaxation (LGSR ) solver. The “logarithm of
the /, norm of the residual™ has been plotted against the
“number of global time-steps.” It can be clearly seen that
both GMLUS and GMILU converge at a much faster rate
than the LGSR solver. The maximum Courant numbers (1)
for GMLUS, GMILU, and LGSR are 100, 100, and 10,
respectively. The maximum A for LGSR is the value of 4
above which LGSR becomes unstable. The maximum 4 for

FIG. 2. Mach number contours for backward facing step, range = 0.0, 0.1, interval = 0.003.
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“Number of time-steps” comparison for backward facing step.
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GMLUS and GMILU is uniformly selected to be 100 for all
the test cases in this research. This is consistent with the aim

-of comparing the best available LGSR performance with the

GMLUS and GMILU solvers.

The use of different values of A for the preconditioned
GMRES and LGSR solvers may raise some question about
the “fairness” of the convergence rate comparisons, par-
ticularly since comparatively higher values of A are used
with preconditioned GMRES. The superior convergence
rate of the preconditioned GMRES solver can be attributed
to two factors—the higher “allowed” values of 4 and the
use of preconditioning. The role of preconditioning in
accelerating convergence can be determined by using
preconditioned GMRES at the same i1 as the LGSR
solver—the result is that the preconditioned GMRES
continues to have a superior convergence rate than the
LGSR soiver, although the speedup factor is reduced.

It must be remarked that the use of preconditioning
enables the GMRES solver to accept higher values of 4 than
those “allowed” by the LGSR solver. It is hence only pru-
dent to take advantage of the increased stability afforded by
the use of preconditioning, and increase the convergence
rate of the preconditioned GMRES solver by using large
Courant numbers. The maximum speedup (in terms of total
time-steps to steady state convergence) would thus be
obtained by using the maximum allowable values of A. The
GMLUS and GMILU solvers are found to be “stable” at
values of 4> 100. However, a higher A usually increases the
cost per time-step, without being offset by a decrease (in
some cases) in the number of time-steps to convergence.
Thus, the GMLUS and GMILU solvers perform must
efficiently (in terms of CPU time) with Courant numbers of
order 100.

The correct physical solution (i.e., the proper reattach-
ment point) is obtained after a six-order reduction of the
residual is achieved. The rapid reduction in the initial
residual (from zero to three orders) required the use of
Reimann invariants at the inflow boundary (as discussed
earlier). This rapid reduction represents elimination of part
of the initial transient. Curves A (for GMLUS) and B (for
GMILU) are generated with a fixed Courant number (1) of
100, for ail time-steps. The LGSR solver (curve C) permits
an initial Courant number of 1 =10 and does not permit
any increase in A (i.e., the iterates diverge at higher vaiues of
A), at any phase of the time integration. GMLUS and
GMILU converge in 3806 and 3087 time-steps, with 11,706
and 9720 sub-iterations, respectively. Note that the number
of sub-iterations varies at each time-step according to the
stopping criteria of Eq. (13) (even though the 4 is fixed).
LGSR achieves a six-order reduction (i.e., the correct physi-
cal solution) in 10,400 time-steps and is estimated to require
51,258 time-steps (according to convergence rate estimates)
to attain a 10-order reduction {i.e., convergence). Hence, in
terms of number of global time-steps to convergence,
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GMLUS and GMILU are 13.5 and 16.5 times faster than
the LGSR solver.

The CPU time comparison of the solvers is shown in
Fig. 5. The superior efficiency of GMLUS over GMILU
and LGSR is seen in this comparison. ILU requires (par-
tially vectorized) computation of the “L”™ and “U” factors at
each global iteration (set-up cost), and subsequent forward
and backward (scalar) solves with the “L” and “U” factors
at each sub-iteration. The block-LUSGS preconditioner
requires virtually no setup time, and involves two (partially
vectorized ) block-diagonal inversions across the domain at
each sub-iteration [14]. This major difference in computa-
tional overhead is the reason why GMILU (2173 s) requires
five times as much CPU time as GMLUS (440s). The
LGSR solver is again extremely slow in terms of total CPU
time, as it was in terms of number of time-steps. LGSR is
estimated to require about 6766 s of CPU time for con-
vergence. Thus, LGSR requires 15.4 times more CPU time
than GMLUS and 3.1 times more CPU time than GMILU.

One of the goals of this research is to develop effective and
efficient preconditioning for the GMRES algorithm for use
with the Navier—Stokes equations. The results of Figs. 4 and
5 contribute to this development. The “number of time-
steps” comparison shows that both the LUSGS and ILU
preconditioners are equally effective in converging to the
steady state solution. The CPU time comparison shows that
the use of LUSGS preconditioning can afford considerable
gains in CPU time over the use of the ILU preconditioner,
while maintaining a competitive convergence rate. This is an
important step in the identification of the LUSGS scheme as
an efficient preconditioner (in terms of storage and CPU
time).

The above preconditioner comparison reveals a signifi-
cant result—either of the two tested preconditioners can be
used with GMRES, to obtain a better convergence rate than
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FIG. 5. “CPU time” comparison for backward facing step.

the conventional LGSR solver. Even though the overhead
cost for one preconditioner (ILU) may be more than that
for another (LUSGS), the use of either one with the unpre-
conditioned GMRES solver guarantees berter performance
than the LGSR soiver. Hence, for initial implementations of
preconditioned GMRES in new or existing codes, either of
the two preconditioners tested in this paper can be
employed.

3.2. Trailing Edge Flow in a Transonic Cascade

In order to fully understand the flow physics near the
trailing-edge of a transonic turbine cascade, Sieverding er af.
[27] conducted experimental tests on a rnodel simulating
the flow in the overhang section of convergent turbine
cascades. The experimental setup is shown in Fig. 6. A
primary goal of the experiment was to study the flow
phiysics around and behind the blunt trailing edge of the
cascade (as modeled by the trailing edge of the flat piate).
Correspondingly, the computational results presented here
concentrate on resolution of the flow in the trailing edge
region. Of the various experimental configurations tested in
Ref. [27], the one chosen for numerical simulation in this
work corresponds to a flat plate overhang length (/)
of 37mm and maximum inclination of the tailboard
(simulating complete loading of the cascade). It must be
mentioned that the experiment of Ref. [27] was performed
with fully turbulent flow. However, the numerical simula-
tion of this work is restricted to laminar flow only and
hence detailed comparisons of surface pressure etc. are not
presented here. The Reynolds number of the flow is 3 x 107,
based on the unit length of the flat plate.

The computational results are obtained on a C-mesh with
207 and 51 points in the ¢ and 5 directions, respectively. The
mesh is generated with the GRAPE code [31], and it is
shown in Fig, 7. Grid points are clustered around solid sur-
faces (i.e., the flat plate and the outer walls of the experimen-
tal setup) and particularly concentrated around the trailing
edge of the flat plate. A freestream Mach number of 0.6 is
specified.

Adiabatic, no-slip boundary conditions are specified for
all solid surfaces. The inflow boundary {consisting of the

—
Flow
spmm
Flat Plate (310mm) Pressure Side L
Sy -----f-----
Suction Side T
i
1 ! somm
Flow —_—
__///:—'—% """""""

FIG. 6. Experimental setup for transonic cascade [25].
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F1G. 8. Mach number contours for transonic cascade, range =0.0,
1.5,005.

cells forming the semi-circular part of the grid} is specified
with subsonic inflow conditions (v, =0, fixed entropy and
stagnation enthalpy, v, =u,). Standard periodic boundary
conditions for C-meshes are applied across the centerline of
the wake cut. At the outflow boundary, a back-pressure,
P,=04P_, (freestream) is specified to overcome the initial
transient. This boundary condition is then changed to
enforce extrapolation of all flow variables to the outflow
boundary. This change is necessary to maintain stability of
the overall solution algorithm.

Figure § shows a comparison of Mach number contours
generated from computational results and an experimental
shadowgraph for the shock system at the trailing edge of the
Mlat plate. The computed trailing edge shocks and expansion
waves, along with the location and inclination of the wake
centerline, compare very well with the experimental data.

Figure 9 details the convergence characteristics of the
GMLUS, GMILU, and LGSR solvers. For this test case,
the correct physical solution is obtained after a threc-order
residual reduction. The Courant numbers are then increase
to 100, 100, and 5 for GMLUS, GMILU, and LGSR,
respectively. GMLUS and GMILU converge to the steady
state solution in 2065 and 2075 time-steps, with 3977 and
3672 sub-iterations, respectively, LGSR is estimated to con-
verge (on the basis of its asymptotic convergence rate) in
34,255 global time-steps. Thus, LGSR requires 16.6 times
more time-steps than GMRES (with either preconditioner).

Figure 10 presents the CPU time comparison of the
GMLUS, GMILU, and LGSR solvers. The tremendous
gains in using preconditioned GMRES instead of LGSR are
again clearly evident from this comparison. As observed
in the previous test case, ILU preconditioning proves to
be much more expensive than LUSGS preconditioning.
However, both preconditioners compete will with LGSR,
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FIG. 9. “Number of fime-steps” comparison for transonic cascade.

which is estimated to require 15072s of CPU time to
converge. Thus, in terms of CPU time to convergence,
GMLUS (653 s)yand GMILU (4282 s) are roughly 23.1 and
3.5 times faster than LGSR, respectively.

3.3. Shock-on-Shock Impingement in Hypersonic Flow

Extensive studies of shock-on-shock impingement and its
effect on heat transfer rates and related phenomena on a
cylindrical leading edge were conducted by Wieting [28].
The study was motivated by a need to gain insights into
the flow physics of (ramp) shocks impinging on a two-
dimensional viscous inlet cowl. The flowfield has complex
shock—shock and shock-shear layer interactions and is
difficult to simulate numerically [297].

Moch=0.6 Re=3x107
Grid Size=207x51

B LEGEND

-2
A=GMLUS

] g=GMmitt
a C=LGSR
3
S -4r
W
L
74
5

-6
o I
S

-8}

‘TO P S 2 i N —

0 2000 4000 6000
CPU TIME {s)
FIG. 10. “CPU time” comparison for transonic cascade.

FIG. 11. Shock~on;shock impingement defined by Edney [32] (not to

scale).

FIG. 12. Computational grid for hypersonic shock (shock-on-shock

Displaced Bow Shock

Impinging Shock

Shear Layers

Mach = 5.94

Sonic Lines

-

i,
Ky

G \“'\".\ R

Y R

R

AR
>,

\‘\:“ '

v
O

impingement, 101 x 101 gnd).



PRECONDITIONED CONJUGATE GRADIENTS 79

Edney [32] has classified shock—shock interactions into
six categories, based on the interference nature of the
impinging shock with the main bow shock. For the purpose
of this research, the “Type 11" interference pattern of Edney
[327 has been chosen for numerical simulation. A schematic
of this pattern is shown in Fig. 11. The pattern is created
when the impinging shock interacts with the bow shock at
a shock angle of 15° The flow is characterized by a dis-
placed bow shock, a transmitted shock, and formation of
supersonic shear layers. The Reynolds number is 1.8 x 10°
per unit diameter of the cow! lip.

Computations are performed on an H-mesh with 101
points each in the ¢ and » directions. The mesh is shown in
Fig. 12. Grid points are clustered near the cowl surface, to
resolve the viscous boundary layer. A freestream Mach
number of 5.94 is specified for the computation. Since it is
difficult to establish the exact location of the impinging
shock from the expeniment [337, trial-and-error is used
until the desired interference pattern for a “TypeII”
interaction is established.

The incoming oblique shock at the inflow boundary is
simulated by imposing the appropriate jump conditions
{with respect to fregstream values) calculated from inviscid
shock theory. The two outflow boundaries are treated with
simple extrapolation of all variables to the respective out-

FIG. 13, Mach number contours for hypersonic shock, range = (.0,
60,02
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FIG. 14. “Number of time-steps” comparison for hypersonic shock.

flow boundaries. Adiabatic, no-slip boundary conditions
are imposed on the surface of the cowl.

The Mach number contours obtained from the
computations are shown in Fig. 13. The shear layers and
displacement of the bow shock are captured well by the
computation, The results compare excellently with similar
calculations done by Kloptex and Yee [33]. The trans-
mitted impinging shock (as seen in the schematic of Fig. 11),
which is very weak, is not captured. Extensive local grid
refinement and grid adaptation is probably required to
capture this weak shock.

Figure 14 presents the “number of time-steps” com-
parison of the GMLUS, GMILU, and LGSR solvers. The
“correct” physical solution is established after a four-order
reduction in the residual. After the initial transients are
resolved, the Courant numbers for the GMLUS, GMILU,
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and LGSR solvers are increased to 100, 100, and 10, respec-
tively. The LGSR solver converges in 14,225 time-steps for
this test case. GMLUS and GMILU require 1900 and 1566
time-steps, with 3463 and 2329 sub-iterations, respectively.
Thus GMLUS and GMILU are 7.5 and 9 times faster than
LGSR, respectively, in terms of number of time-steps to
convergence.

CPU time comparisons flor the three solvers are shown in
Fig. 15. The results are consistent with the observations for
the previous two test cases. GMLUS (475 s) is the most
efficient solver in terms of CPU time. It is 6.4 times quicker
than GMILU (3058 s) and 12.6 times faster than LGSR
{5975 s).

4. CONCLUSIONS

The competitiveness of a proposed preconditioned
GMRES solver for CFD applications has been examined in
this research. The proposed solver is validated with three
diverse fluid-flow test problems—low-speed flow over a
backward-facing step, transonic flow through a turbine
cascade, and hypersonic flow on a cylindrical leading edge.
The proposed preconditioned GMRES solver performs
with uniform success with all the test cases and hence
presents a viable alternative to existing implicit solvers in
CFD research.

This research establishes that the use of an effective,
efficient preconditioner 1s extremely important to the suc-
cess of GMRES. Recall that an “effective” preconditioner is
one that assists the unpreconditioned GMRES solver in
obtaining convergence to the steady state solution in the
minimum number of time-steps. An “efficient” precondi-
tioner is one which requires minimal overhead (storage and
CPU time) when used with the unpreconditioned GMRES
solver. An “effective” preconditioner may not necessarily
be “efficient,” and vice versa. For this research, several
preconditioners were investigated for their effectiveness
and efficiency. The LUSGS (lower-upper symmetric
Gauss—Seidel} scheme of Jameson and Yoon [23] and the
IL.U (incomplete lower-upper factorization with zero fili-in j
preconditioner prove to be good candidates to fill the role
of effective and efficient preconditioners. Both ILU and
LUSGS are found to be equally effective in their ability to
assist GMRES in achieving an excellent convergence rate.
Hence, either of the two preconditioners tested in this
research could be used with GMRES to construct an
implicit solver for new or current CFD codes.

This work represents the first documented use of
the LUSGS scheme as a preconditioner in conjunction
with Krylov subspace methods (GMRES in particular),
GMRES with the LUSGS preconditioner (or GMLUS) is
found to be significantly more “efficient” than the GMRES
with the TLU preconditioner (or GMILU). This is an

important finding related to the development of efficient
preconditioners for CFD applications. ILU has been one of
the most popular preconditioners used by researchers
working with preconditioned Krylov subspace methods.
The present research has shown that the LUSGS technigque
can complete well with ILU in effectiveness, but is
remarkably more efficient in terms of the overhead costs
associated with the preconditioning effort.

Since the cost of GMRES-like solvers increases with the
number of sub-iterations (&), it becomes necessary to “mini-
mize” k at each time-step. The number of sub-iterations
(and hence the accuracy to which the linear system is
solved) can be restricted without affecting the global con-
vergence of the non-linear CFD problem. An empirical but
highly effective “stopping” criteria for determining k has
been formulated in this research. The “stopping” criteria is
based on the Courant number of the global iteration and
can be easily automated for different CFD applications. The
use of this criteria allows a variable & and minimizes the
computational cost of the preconditioned GMRES solver.
In contrast, a fixed & may produce a linear-system solution
of very low accuracy (if £ is too low), or incur an unneces-
sarily high cost for each linear-system solve (if & is too high).

One of the goals of this research is to compare the perfor-
mance of the proposed preconditioned GMRES solvers
with a conventional CFD solver. An alternately sweeping,
upwind line Gauss—Seidel relaxation (LGSR algorithm is
chosen to represent the school of implicit schemes. The
proposed solver provides remarkable speedups over the
LGSR solver when converging to a steady-state solution.
When the “number of time-steps to convergence” is used as
a comparison criterion, the preconditioned GMRES solvers
are shown to be 8-17 times faster than the LGSR solver, for
the three different test cases (incompressibie, transonic, and
hypersonic). For “CPU time to convergence” as a com-
parison criterion, GMLUS is the most efficient solver.
Specificaily, GMLUS is 13-23 times faster than LGSR and
5-7 times faster than GMILU for the three test cases in this
research.

It must be mentioned that “inner iterations™ with the
LGSR solver [34] can speed up the LGSR solver (by a
factor of two in some cases) and thus affect some of the
above conclusions. However, Ref [34] also states that
“inner iterations” work better for supersonic flow than for
subsonic flow and may thus have limited applicability. The
performance of all the solvers researched here could also
be improved by the use of concepts like multigrid, mesh
sequencing, or similar preconditioning techniques.

As a result of the efforts in this research, an impiicit solver
based on preconditioned Krylov subspace techniques has
been developed for CFD applications. The new solver is
demonstrated to be efficient over a wide range of CFD
problems and Mach numbers and provides rapid steady
state solutions of the Navier-Stokes equations. '
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